11 resultados para Guideline Adherence

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterotoxigenic Escherichia coli associated with human diarrheal disease utilize any of a limited group of serologically distinguishable pili for attachment to intestinal cells. These include CS1 and CFA/I pili. We show here that chemical modification of arginyl residues in CS1 pili abolishes CS1-mediated agglutination of bovine erythrocytes, which serves as a model system for attachment. Alanine substitution of the single arginyl residue in CooA, the major pilin, had no effect on the assembly of pili or on hemagglutination. In contrast, substitution of alanine for R181 in CooD, the minor pilin associated with the pilus tip, abolished hemagglutination, and substitution of R20 reduced hemagglutination. Neither of these substitutions affected CS1 pilus assembly. This shows that CooD is essential for CS1-mediated attachment and identifies specific residues that are involved in receptor binding but not in pilus assembly. In addition to mediating agglutination of bovine erythrocytes, CFA/I also mediates agglutination of human erythrocytes. Substitution of R181 by alanine in the CooD homolog, CfaE, abolished both of these reactions. We conclude that the same region of the pilus tip protein is involved in adherence of CS1 and CFA/I pili, although their receptor specificities differ. This suggests that the region of the pilus tip adhesin protein that includes R181 might be an appropriate target for therapeutic intervention or for a vaccine to protect against human diarrhea caused by enterotoxigenic E. coli strains that have serologically different pili.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different stable lipoxin A4 (LXA4) analogs (i.e., 16-phenoxy-LXA4-Me, 15-cyclohexyl-LXA4-Me, and 15-R/S-methyl-LXA4-Me) were studied for their ability to modulate leukocyte-endothelial cell interactions in the rat mesenteric microvasculature. Superfusion of the rat mesentery with 50 μmol/liter NG-nitro-l-arginine methyl ester (l-NAME) caused a significant, time-dependent increase in leukocyte rolling (56 ± 8 cells/min; P < 0.01 vs. control) and leukocyte adherence (12.5 ± 1.2 cells/100 μm length of venule; P < 0.01 vs. control) after 120 min of superfusion. Concomitant superfusion of the rat mesentery with 10 nmol/liter of each of three lipoxin analogs consistently and markedly attenuated l-NAME-induced leukocyte rolling to 10 ± 4 (P < 0.01), 4 ± 1 (P < 0.01), and 32 ± 7 (P < 0.05) cells/min, and adherence to 4 ± 0.8 (P < 0.01), 1.1 ± 0.4 (P < 0.01), and 7 ± 0.7 (P < 0.05) cells/100 μm length of venule (16-phenoxy-LXA4-Me, 15-cyclohexyl-LXA4-Me, and 15-R/S- methyl-LXA4-Me, respectively). No alterations of systemic blood pressure or mesenteric venular shear rates were observed in any group. Immunohistochemical up-regulation of P-selectin expression on intestinal venular endothelium was significantly increased (P < 0.01) after exposure to l-NAME, and this was significantly attenuated by these lipoxin analogs (P < 0.01). Thus, in vivo superfusion of the rat mesentery with stable lipoxin analogs at 10 nmol/liter reduces l-NAME-induced leukocyte rolling and adherence in the mesenteric rat microvasculature by attenuating P-selectin expression. This anti-inflammatory mechanism may represent a novel and potent regulatory action of lipoxins on the immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Killing of human cells by the parasite Entamoeba histolytica requires adherence via an amebic cell surface lectin. Lectin activity in the parasite is regulated by inside-out signaling. The lectin cytoplasmic domain has sequence identity with a region of the β2 integrin cytoplasmic tail implicated in regulation of integrin-mediated adhesion. Intracellular expression of a fusion protein containing the cytoplasmic domain of the lectin has a dominant negative effect on extracellular lectin-mediated cell adherence. Mutation of the integrin-like sequence abrogates the dominant negative effect. Amebae expressing the dominant negative mutant are less virulent in an animal model of amebiasis. These results suggest that inside-out signaling via the lectin cytoplasmic domain may control the extracellular adhesive activity of the amebic lectin and provide in vivo demonstration of the lectin’s role in virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion has a fundamental role in the proliferation and motility of normal cells and the metastasis of tumor cells. To identify signaling pathways activated by the adherence of tumor cells, we analyzed the tyrosine phosphorylation of proteins in mouse melanoma cells before and after attachment to substrata. We discovered that cellular adherence activated the protein-tyrosine kinase of the cell surface receptor Met, whose ligand is hepatocyte growth factor and scatter factor. The activation was exceedingly prompt, affected the great majority of Met in the cells, persisted so long as the cells remained adherent, and was rapidly reversed as soon as the cells were detached from substrata. Activation of Met required that cells be adherent but not that they spread on the substratum, and it occurred in the absence of any apparent ligand for the receptor. Ligand-independent activation of Met occurred in several varieties of tumor cells but not in normal endothelial cells that express the receptor. The activation of Met described here may represent a means by which cells respond to mechanical as opposed to biochemical stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherence of mature Plasmodium falciparum parasitized erythrocytes (PRBCs) to microvascular endothelium contributes directly to acute malaria pathology. We affinity purified molecules from detergent extracts of surface-radioiodinated PRBCs using several endothelial cell receptors known to support PRBC adherence, including CD36, thrombospondin (TSP), and intercellular adhesion molecule 1 (ICAM-1). All three host receptors affinity purified P. falciparum erythrocyte membrane protein 1 (PfEMP1), a very large malarial protein expressed on the surface of adherent PRBCs. Binding of PfEMP1 to particular host cell receptors correlated with the binding phenotype of the PRBCs from which PfEMP1 was extracted. Preadsorption of PRBC extracts with anti-PfEMP1 antibodies, CD36, or TSP markedly reduced PfEMP1 binding to CD36 or TSP. Mild trypsinization of intact PRBCs of P. falciparum strains shown to express antigenically different PfEMP1 released different (125)I-labeled tryptic fragments of PfEMP1 that bound specifically to CD36 and TSP. In clone C5 and strain MC, these activities resided on different tryptic fragments, but a single tryptic fragment from clone ItG-ICAM bound to both CD36 and TSP. Hence, the CD36- and TSP-binding domains are distinct entities located on a single PfEMP1 molecule. PfEMP1, the malarial variant antigen on infected erythrocytes, is therefore a receptor for CD36, TSP, and ICAM-1. A therapeutic approach to block or reverse adherence of PRBCs to host cell receptors can now be pursued with the identification of PfEMP1 as a malarial receptor for PRBC adherence to host proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 170-kDa subunit of the galactose-adherence lectin (Gal-lectin) of Entamoeba histolytica mediates adherence to human colonic mucins and intestinal epithelium as a prerequisite to amebic invasion. The Gal-lectin is an immunodominant molecule and a protective antigen in the gerbil model of amebiasis. Tumor necrosis factor alpha (TNF-alpha) produced by activated macrophages enhances nitric oxide-dependent cytotoxicity in host defense against E. histolytica. The purpose of this study was to identify the Gal-lectin epitopes which stimulate TNF-alpha production by macrophages. Murine bone marrow-derived macrophages (BMMs) exposed to Gal-lectin (100-500 ng/ml) stimulated stable expression of TNF-alpha mRNA (8-fold increase) and TNF-alpha production similar to that of lipopolysaccharide-stimulated cells (100 ng/ml). Polyclonal anti-lectin serum specifically inhibited TNF-alpha mRNA induction in response to the Gal-lectin but not to lipopolysaccharide. Anti-lectin monoclonal antibodies 8C12, H85 and 1G7, which recognize nonoverlapping epitopes of the cysteine-rich region of the 170-kDa heavy subunit, inhibited both amebic adherence to mammalian cells and Gal-lectin-stimulated TNF-alpha mRNA expression by BMMs,but monoclonal antibody 7F4 did neither. As these inhibitory antibodies map to amino acids 596-1082 of the 170-kDa Gal-lectin, our results have identified the functional region that mediates amebic adherence and TNF-alpha mRNA induction in BMMMs; thus, this region of the Gal-lectin is a subunit vaccine candidate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rule that eukaryotic ribosomes initiate translation exclusively at the 5' proximal AUG codon is abrogated under rare conditions. One circumstance that has been suggested to allow dual initiation is close apposition of a second AUG codon. A possible mechanism might be that the scanning 40S ribosomal subunit flutters back and forth instead of stopping cleanly at the first AUG. This hypothesis seems to be ruled out by evidence presented herein that in certain mRNAs, the first of two close AUG codons is recognized uniquely. To achieve this, the 5' proximal AUG has to be provided with the full consensus sequence; even small departures allow a second nearby AUG codon to be reached by leaky scanning. This context-dependent leaky scanning unexpectedly fails when the second AUG codon is moved some distance from the first. A likely explanation, based on analyzing the accessibility of a far-downstream AUG codon under conditions of initiation versus elongation, is that 80S elongating ribosomes advancing from the 5' proximal start site can mask potential downstream start sites.